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Abstract
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1 A sampling of significant agent-based modelling beyond DCIS

We briefly sample significant relevant prior agent-based models, beyond the
scope of DCIS modelling emphasised in the main text. For a broader and
deeper review, please see Lowengrub et al. (2010); Macklin et al. (2010b);
Deisboeck et al. (2011) and the references therein.

Cellular automata methods–which arrange cells on a regular (e.g., Cartesian
or hexagonal) lattice with probabilities governing state changes and jumps
between lattice points–are efficient for linking molecular- and cellular-scale bi-
ology in large numbers of virtual cells. However, they cannot accurately model
cell and tissue mechanics due to the limitations they place upon cell arrange-
ment (must be grid-aligned), size (all cells have equal size), velocity (cells move
one cell diameter per time step), and interactions (can only interact with up to
8 neighbours in 2D). In particular, proliferation is disallowed in cells that are
surrounded by cells in the adjacent computational mesh points; in actual tis-
sue, interior cells can proliferate by deforming and pushing neighbouring cells
into non-lattice configurations. We use agent-based modelling (ABM), which
eliminates the computational lattice and instead assigns each cell a position
that evolves under the influence of forces acting upon it. Note that ABMs
are sometimes referred to as individual-based models or particle methods. Al-
ternative approaches include the lattice-gas method (Dormann and Deutsch,
2002), off-lattice cellular automata methods such as Voronoi-Delaunay models
(Schaller and Meyer-Hermann, 2005), the immersed boundary cell model (Re-
jniak, 2007; Rejniak and Dillon, 2007; Rejniak and Anderson, 2008a,b), and
the cellular potts technique (a.k.a. Graner-Glazier-Hogeweg model) (Graner
and Glazier, 1992; Glazier and Garner, 1993).

An excellent agent-based model was developed by Drasdo, Höhme and co-
workers (Drasdo et al., 1995; Drasdo and Höhme, 2003, 2005; Drasdo, 2005).
Cells are modelled as roughly spherical, slightly compressible, and capable of
migration, growth and division. Cell adhesion and repulsion (from limitations
on cell deformation and compressibility) are modelled by introducing an inter-
action energy; cells respond to proliferation and apoptosis in their neighbours
by moving to reduce the total interaction energy using a stochastic algorithm.
Ramis-Conde et al. (2008a,b) used a similar agent model, but instead used in-
teraction potential functions to simulate cell-cell mechanics: cells move down
the gradient of the potential, analogous to minimizing the interaction en-
ergy. Their work included a basic accounting for the cell-cell surface contact
area, and related the strength of cell-cell adhesion to the concentration of E-
cadherin/β-catenin complexes in the contact regions. Others have modelled
cells as deformable viscoelastic ellipsoids (e.g., Palsson and Othmer (2000);
Dallon and Othmer (2004)).
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Drasdo et al. (1995) initially developed their agent model to study epithe-
lial cell-fibroblast-fibrocyte aggregations in connective tissue. More recently,
they applied it to avascular tumour growth (Drasdo and Höhme, 2003), with
parameters drawn from experimental literature (Drasdo and Höhme, 2005).
Byrne and Drasdo (2009) upscaled a discrete model to calibrate a continuum
tumour growth model, in part by using a cell velocity-based approximation of
the proliferative pressure to calibrate the continuum-scale mechanics. Drasdo
and co-workers were able to mechanistically model biomechanical growth limi-
tations and the epithelial-to-mesenchymal transition in tumour cells, and they
made testable hypotheses on the links between tumour hypoglycaemia and the
size of the necrotic core. Galle et al. (2005, 2009) extended the approach to
include cell-BM adhesion, and its impact on cell differentiation and tumour
monolayer progression. Ramis-Conde et al. (2008a,b) investigated the links
between a sophisticated subcellular model of E-cadherin/β-catenin signalling,
intercellular signalling, and tissue morphology.

The very recent agent model of Norton et al. (2010) represented cell-cell ad-
hesion and repulsion using a linear damped spring model, incorporated both
apoptosis and necrosis, duct wall adhesion (through adhesion to myoepithelial
cells), asymmetric progenitor cell division, and a simplified model of intra-
ductal fluid pressure. The model recapitulated solid-type, comedo-type, mi-
cropapillary, and cribriform DCIS, illustrating the great potential in an agent-
based modelling approach. However, the model lacked substrate transport,
necrosis was modelled by imposing the viable rim thickness a priori rather
than through a combination of cell energetics and transport limitations, and
proliferating cells were randomly distributed across the viable rim with uni-
form distribution; this contradicts immunohistochemical observations of the
distribution of proliferating DCIS cells within the duct. The authors did not
treat necrotic core mechanics, which has a great impact on the overall tumour
morphology and rate of tumour advance in the duct. The observed microstruc-
tures were only partly mechanistic because the model enforced polarised cell-
cell adhesion and “microlumens” algorithmically; in a mechanistic model, the
tumour microstructure should not be imposed, but rather emerge naturally
from the model’s biophysics and population dynamics. Nonetheless, their work
demonstrates the great potential in using individual-based models to formu-
late new hypotheses on the biophysical underpinnings of cancer; based upon
their polarisation model, they hypothesise that DCIS tumours progress from
micropapillary to cribriform to solid-type because overproliferation collapses
the “microlumens.”

We are drawn to agent-based modelling due to its great potential for cali-
bration to and comparison with in vitro and clinical data. After rigorously
calibrating their biomechanical models, Galle et al. (2005, 2009) produced
quantitatively accurate predictions of in vitro monolayer growth in several cell
lines. They also tested competing hypotheses and compared the simulations to
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additional experiments to investigate the interrelated roles of cell-cell and cell-
BM contact inhibition. And in a novel inverse mapping approach, Engelberg
et al. (2008) used an agent-based framework on a hexagonal mesh to itera-
tively determine a minimal set of “axiomatic operating principles” that could
reproduce in vitro measurements of EMT6 (a mammary tumour cell line)
growth characteristics in high- and low-nutrient environments. As we see in
the main text, by rigorously calibrating our model to clinical DCIS data, were
are able to make quantitative, testable predictions on emergent macroscopic
DCIS behaviour, as well as new hypotheses on how necrotic core biomechanics
affect mammography, diagnostic pathology, and clinical progression.

2 Agent model generalisations

Cell-ECM adhesion (Fcma): Integrins IE on the cell surface bond with
suitable ligands LE in the ECM. We assume that LE is distributed proportion-
ally to the (nondimensional) ECM density E. If IE is distributed uniformly
across the cell surface and E varies slowly relative to the spatial size of a single
cell, then cells at rest encounter a uniform pull from Fcma in all directions,
resulting in zero net cell-ECM force. For cells in motion, Fcma resists that
motion similarly to drag due to the energy required to overcome I −L bonds:

Fcma = −ccmaIE,iEvi. (1)

Here, ccma is a constant. If E or LE varies with a higher spatial frequency, or
if IE is not uniformly distributed, then the finite half-life of IE − LE bonds
will lead to net haptotactic-type migration up gradients of E (Macklin et al.,
2010b). We model this effect as part of the net locomotive force Floc.

For cells in a lumen where E is zero, Fcma = 0. However, cells encounter ECM
(E ̸= 0) when invading the stroma, when pushed into the stroma through
breaks in the BM (following an inadequate surgical resection or after a phe-
notypic change that causes MMP secretions), or following deposition of ECM
by other cell species. Inclusion of this term facilitates future investigations
of microinvasion and regrowth following inadequate surgical resection. As we
shall see below, Fcma is important for understanding Darcy’s law formulations
of tissue mechanics. We note that Preziosi and Tosin (2009) discussed a gen-
eralisation of Eq. 1 to develop biologically-justified tissue-scale biomechanics
models; their work was supported and driven by an extensive review of the
experimental literature on cell adhesion molecules.

Generalised hypoxia (H): Cells enterH at any time that σ < σH. Hypoxic
cells have an exposure time-dependent probability of becoming necrotic:
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Pr (S(t+∆t) = N|S(t) = H) = 1− exp

(
−
∫ t+∆t

t
βH(σ)(s) ds

)
ds

≈ 1− exp(−βH (σ) (t)∆t) ; (2)

βH(σ)(t) should depend upon σ to explicitly model energy depletion, as in
Smallbone et al. (2007); Silva and Gatenby (2010). If σ > σH (normoxia is
restored) at time t + ∆t and the cell has not become necrotic, it returns to
its former state and resumes its activity. For example, if the cell transitioned
from P to H after spending τ time in the cell cycle, and normoxic conditions
are restored, then it returns to P with τ time having elapsed in its cell cycle
progression. This is a simplified model of the persistence of the cell’s proteomic
state during short periods of hypoxia; indeed, restoration of normoxia can
sometimes “rescue” hypoxic cells to resume cell cycling (DiGregorio et al.,
2001; Green et al., 2001; Gilliland et al., 2009), and hypoxic cells can re-enter
an apoptotic state upon restoration of normoxia (Tatsumi et al., 2003). Model
refinements may be necessary to fully capture normoxic cell rescue, given the
known multiple arrest points, the important role played by glucose in these
processes, and a “startup” time to resume transcription, protein synthesis and
ATP production prior to cycle resumption.

Notice that by Eq. 2, the probability that a cell succumbs to hypoxia increases
with ∆t whenever S = H, independently of previous states. Hence, this prob-
ability scales (nonlinearly) with its cumulative exposure time to hypoxia. This
construct could model cell response to other stressors (e.g., chemotherapy),
similarly to “area under the curve” models (e.g., El-Kareh and Secomb (2005)).

3 Additional mathematical notes and analyses

3.1 Relationship of the inertialess assumption to Darcy’s law

Recall the inertialess formulation of the agent velocity:

vi=
1

ν + ccmaIE,iE

N(t)∑
j=1
j ̸=i

(
Fij

cca + Fij
ccr

)
+ Fi

cba + Fi
cbr + Fi

loc

 . (3)

It is interesting to compare Eq. 3 with Darcy’s law, the basis of many continuum-
scale tumour models such as Cristini et al. (2003); Macklin and Lowengrub
(2005, 2006, 2007, 2008); Macklin et al. (2009b), where tumour growth is
considered as incompressible flow in a porous medium (the ECM). A mechan-
ical pressure P models tissue mechanics as a balance of proliferation-induced

5



stresses, adhesion, and tissue relaxation. If u(x, t) is the mean tissue velocity
at x, then the Darcy’s law formulation of the tissue mechanics is

u = −µ∇P. (4)

See the extensive review, discussion, and references in Lowengrub et al. (2010).

The mobility coefficient µ models the ability of cells to mechanically respond
to pressure gradients by overcoming cell-cell and cell-ECM adhesive bonds,
or by deforming the ECM (Macklin and Lowengrub, 2007). In Frieboes et al.
(2007); Macklin et al. (2009b), we introduced a functional relationship between
the mobility µ and the ECM density E of the form

µ =
1

α+ βE + 1
ϵ
S
, (5)

where S is a “structure variable” that models the presence (S = 1) or absence
(S = 0) of rigid barriers, ϵ ≈ 0, and α and β are constants. When S = 0, Eq.
5 is identical to the coefficient in Eq. 3. While Eq. 5 was initially chosen as the
simplest possible with biologically-reasonable qualitative behaviour (mobility
decreases as the ECM density increases, rendering the tissue less “permeable”
to cells), it is fully consistent with the cell-scale biophysics presented above.

3.2 Relationship between the exponential random variables and nonhomogen-
eous Poisson processes

To date, stochastic processes have primarily been applied to understanding cell
evolution (e.g., differentiation and mutation networks), but have not been com-
monly used to model and analyse phenotypic state transitions. Instead, phe-
notypic state changes are generally modelled by constant probabilities (e.g.,
see Anderson (2005)) which must be adjusted whenever time step sizes are
altered. Modelling phenotypic state transitions as exponentially-distributed
random variables is a natural generalisation of this trend, which allows us to
rigorously vary the transition probabilities with variable time step sizes, such
as those necessary to enforce numerical stability and/or accuracy conditions.
If a transition from the quiescent state Q to some state X (e.g., P) is governed
by an exponential random process with (time-variant) parameter α(t), then

Pr (S(t+∆t) = X|S(t) = Q) = 1− exp

(
−
∫ t+∆t

t
α(s) ds

)
≈ 1− e−α(t) ∆t

=α(t)∆t+O
(
∆t2

)
. (6)
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When α is constant, we recover (to second order) the commonly-used con-
stant transition probabilities for fixed step sizes ∆t; these may be regarded as
approximations to our more general model here.

By classical stochastic processes theory, Eq. 6 can be regarded as arising from
a nonhomogeneous Poisson process. For any phenotypic state X and time t,
let Xt denote the number of times a cell (including its ancestors and progeny)
makes a Q → X phenotypic transition by time t, and set X0 = 0. Then Xt

is a counting process. If we further assume that the process has independent
(but not necessarily stationary) increments and that

Property 1: Pr (Xt+∆t −Xt ≥ 2) = O (∆t2), and
Property 2: Pr (Xt+∆t −Xt = 1) = α(t)∆t+O (∆t2),

then Xt is a nonhomogeneous (due to the time variation of α) Poisson process
with intensity function α. Such processes can be viewed as the originators of
the exponential phenotypic transition probabilities used in our model, and the
time between Q → X transitions are exponentially-distributed interarrival
times. In particular, Eq. 6 gives the probability that there is at least one
Q → X transition in (t, t+∆t].

In actuality, we wish to model the probability of there being precisely one
Q → X transition in (t, t+∆t]. This probability can be calculated by

Pr (S(t+∆t) = X|S(t) = Q) =Pr (Xt+∆t −Xt = 1)

= exp

(
−
∫ t+∆t

t
α(s) ds

)∫ t+∆t

t
α(s) ds

≈ e−α(t) ∆tα(t)∆t. (7)

However, by Property 1, Eq. 6 can be regarded as a second-order approxima-
tion of Eq. 7. Furthermore, by construction, the cells remain in the X state
for a nonzero length of time τX , and so if Xt+∆t −Xt ≥ 2 and ∆t < τX , then
only the first Q → X transition has physical meaning. Indeed, we generally
construct α(t) to satisfy α(t) = 0 when S = X , and so the model precludes
the possibility of two Q → X phenotypic transitions in a short time duration.
Hence, the exponential interarrival approximation in Eq. 6 is justifiable.

Lastly, note that the simple relationship between the exponential random vari-
ables and the parameters is useful for model calibration: for a homogeneous
Poisson process with intensity α, the mean time between successive events is
1/α. For non-homogeneous processes, we use the mean intensity ⟨α⟩ to esti-
mate the mean time between events 1/⟨α⟩. These times could be measured
in vitro (e.g., the mean time spent in G0 between cell cycles), making this
formulation potentially valuable for quantitative modelling.
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3.3 Volume-averaged model behaviour in the viable rim

For each time t, let Ω(t) denote the (non-hypoxic) viable rim. Let P (t), A(t),
and Q(t) denote the number of proliferating, apoptosing, and quiescent cells
in Ω at time t, respectively. Let N(t) = P + A +Q. If ⟨αP⟩(t) = 1

|Ω|
∫
Ω αP dV

is the mean value of αP at time t throughout Ω, then the net number of cells
entering state P in the time interval [t, t+∆t) is approximately

P (t+∆t) =P (t) + Pr (S(t+∆t) = P|S(t) = Q)Q(t)− 1

τP
P (t)∆t

≈P (t) +
(
1− e−⟨αP⟩∆t

)
Q(t)− 1

τP
P (t)∆t, (8)

whose limit as ∆t ↓ 0 (after some rearrangement) is

Ṗ = ⟨αP⟩Q− 1

τP
P. (9)

Similarly,

Ȧ=αAQ− 1

τA
A (10)

Q̇=2
1

τP
P − (⟨αP⟩+ αA)Q. (11)

Summing these, we obtain

Ṅ =
1

τP
P − 1

τA
A. (12)

Next, define PI = P/N and AI = A/N to be the proliferative and apoptotic
indices, respectively. We can express the equations above in terms of AI and PI
by dividing by N and using Eq. 12 to properly treat d

dt
(P/N) and d

dt
(A/N).

After simplifying, we obtain a nonlinear system of ODEs for PI and AI:

ṖI= ⟨αP⟩ (1− AI− PI)− 1

τP

(
PI + PI2

)
+

1

τA
AI · PI (13)

ȦI=αA (1− AI− PI)− 1

τA

(
AI− AI2

)
− 1

τP
AI · PI. (14)

8



These equations are far simpler to compare to immunohistochemical measure-
ments, which are generally given in terms of AI and PI.

Lastly, note that Eqs. 13-14 admit two natural time scales τA and τP. We later
show that both of these scales are on the order of 1 day; see Section 4. Suppose
then that we nondimensionalise this system with time scale t ∈ {τA, τP}. Then
supposing that the system reaches steady state for t exceeding 10t to 100t,
this analysis suggests that the local cell state dynamics reach steady state
after 10 to 100 days. (Note that the values of αA and αP may also affect the
time to steady state, although we observe steady-state population dynamics
by 15 days in the main simulation results.) This is significant, because it will
allow us to calibrate the population dynamic parameters (αA, αP) without
the inherent difficulty of estimating time derivatives from often noisy in vitro
and immunohistochemistry data. This result is consistent with our earlier
mathematical analysis in Macklin and Lowengrub (2007), which hypothesised
“local equilibration” of the tumour microstructure, even during growth.

4 Patient-independent parameter estimation: expanded detail

We now give expanded detail on our estimates of the parameters that are com-
mon to all patients, based upon literature searches of theoretical and exper-
imental biology, mathematical analysis, and prior modelling efforts. In many
cases, the literature can give values that may span multiple orders of magni-
tude; other parameters may be difficult (or impossible) to measure directly,
particularly in vivo. In such cases, we attempt to estimate the most likely
order of magnitude of the parameter, and evaluate the ensemble package of
model plus parameter estimates plus calibration. To the extent that the ensem-
ble makes reasonable quantitative predictions that can be validated against
the experimental and clinical literature, we can accept such estimates as suf-
ficient. Discrepancies between the model predictions and observed biological
and clinical behaviour may expose specific parameters that require better mea-
surements. Thus, this work serves as a proof of concept to determine which
parameters are most critical to accurate agent-based simulations. The full list
of non-specific parameters and their physical meanings is given in Table 1.

4.1 Cell cycle timescales

We estimate that the cell cycle time τP is 18 hours by the modelling literature
(e.g., Owen et al. (2004)). We estimate that τG1 ≈ 1

2
τP = 9 hours (e.g., see

the S + G2 + M time in Smith and Martin (1973)).
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Parameter Physical Meaning Value Section

τP cell cycle time 18 hours 4.1

τG1 length of G1 9 hours 4.1

τA apoptosis time 8.6 hours 4.2

τNL necrotic cell lysis time 6 hours 4.3

fNS necrotic cell volume increase 1.0 4.3

τC necrotic debris calcification time 15 days 4.4

L oxygen diffusion length scale 100 µm 4.5

λ (viable) tumour cell oxygen uptake rate 0.1 min−1 4.5

λb
oxygen uptake/decay rate for non-
viable cells and background

0.01λ 4.5

σH hypoxic oxygen threshold 0.2 4.5

RA maximum adhesion distance 1.214R 4.6

cccr cell-cell repulsive force coefficient 10.0ν µm/min 4.6

ccbr cell-BM repulsive force coefficient cccr 4.6

ncca cell-cell adhesion potential exponent 1 4.6

nccr cell-cell repulsion potential exponent 1 4.6

ncba cell-BM adhesion potential exponent ncca 4.6

ncbr cell-BM repulsion potential exponent nccr 4.6

M maximum value of |∇ψ| 1 4.6

Table 1
Patient-independent parameters and values for DCIS.

4.2 Apoptosis timescale

The time course from the initial signal to commence apoptosis to final cell lysis
has been difficult to quantify (Hu et al., 1997). Early reviews estimated the
early cellular events in apoptosis comprise a fast process on the order of min-
utes, with digestion of apoptotic bodies occurring within hours of phagocytosis
(Kerr et al., 1994). Hu et al. (1997) conducted a detailed in vivo observation of
apoptosis in the rat hippocampus, observing cells breaking up in 12–24 hours
and the complete elimination of apoptotic bodies within 72 hours. Experimen-
tal work by Scarlett et al. (2000) similarly observed most apoptotic processes
on the order of hours. These provide a bound for τA ≤ 24 h and suggest that
apoptotic bodies are eliminated in under 48 hours after cell lysis. In total, the
experimental observations in the literature lead us to estimate τA ≈ O(10h).

We estimate τA for breast epithelial cells based upon the hypothesis that can-
cerous and noncancerous cells use the same basic mechanisms of proliferation
and apoptosis, only with altered frequency (Hanahan and Weinberg, 2000).
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Hence, we postulate that τA and τP are the same for DCIS cells and noncancer-
ous breast epithelial cells. The total number of cells N(t) in a fixed region of
breast epithelium is given by

Ṅ =
(
1

τP
PI− 1

τA
AI
)
N, (15)

where PI and AI are the proliferative and apoptotic indices (the fractions of
proliferating and apoptosing cells), respectively (supplementary material). If
we assume that noncancerous breast epithelial tissue is in homeostasis (when
averaged through the duration of the menstrual cycle), then Ṅ = 0, and

τA PI = τP AI. (16)

In Lee et al. (2006b), the mean proliferative and apoptotic indices of non-
cancerous breast epithelial cells in several hundred pre-menopausal women
were measured at 0.0252±0.0067 and 0.0080±0.0006, respectively. While the
AI and PI can vary considerably in time due to hormone fluctuation during
the menstrual cycle (Navarrete et al., 2005), when averaged over many women
(who fall at different points in this cycle), the effects of the monthly variation
should cancel. Assuming that τP = 18 h, we estimate τA ≈ 5.71 h. This is
consistent our estimates above.

Since DCIS occurs predominantly in postmenopausal women, any effect of
monthly variation with the menstrual cycle is not pertinent for the majority
of DCIS patients. Lee et al. (2006b) measured the PI and AI in several hundred
postmenopausal women at 0.0138± 0.0069 and 0.0043± 0.0007, respectively.
Using these data gives τA ≈ 5.62 h. The similarity of the estimates in pre- and
post-menopausal women supports our working hypothesis that τA and τP are
relatively fixed for the cell type, even in different hormonal environments.

We now account for detection shortcomings in the immunostaining. (See Duan
et al. (2003) for a good overview of the current apoptosis marking methods
in histologic tissue samples.) The AI measurements in Lee et al. (2006b) were
obtained by TUNEL assay, which detects DNA fragmentation. According to
the detailed work on Jurkat cell apoptosis in Scarlett et al. (2000), there was
an approximately 3-hour lag between the inducement of apoptosis (observed
as rapid changes in mitochondrial membrane voltage potential and the ratio
of ATP to ADP) and the detection of DNA laddering and chromatin conden-
sation. Cleaved Caspase-3 activity was negligible for the first 60 minutes and
steadily climbed thereafter, peaking after 180 minutes and reaching approxi-
mately 10% of that peak in 50-60 minutes. On this basis, we would expect that
TUNEL-assay-based AI figures fail to detect approximately the first 3 hours
of apoptosis, and cleaved Caspase-3-based AI stains could underestimate the
first one-to-two hours. Thus, we increase our estimate for τA to 8.6 hours.
This also gives “correction factors” to account for undetected apoptotic cells
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by TUNEL assay and cleaved Caspase-3 immunostaining:

AIactual ≈
8.6

5.6
AITUNEL, and (17)

8.6

7.6
AICaspase-3 ≤ AIactual ≤

8.6

6.6
AICaspase-3. (18)

4.3 Necrosis parameters

Necrotic cells lack sufficient energy to maintain ion pumps that regulate intra-
cellular H+, K+, Na+ and Ca+ concentrations. K+ and Na+ play key roles in
modulating cell volume; pumps for these ions are active during apoptosis to
promote orderly cell shrinking and prevent premature lysis (Majno and Joris,
1995; McCarthy and Cotter, 1997; Barros et al., 2001; Cantoni et al., 2005). On
this basis, we estimate τNL < τA (8.6 h). This is consistent with experimental
reports of necrotic cell lysis times ranging from “immediate” (e.g., Cantoni
et al. (2005)), 6-7 hours (e.g., in Majno and Joris (1995)), and “overnight”
(e.g., Mattes (2007)). We use τNL = 6 hours for our initial estimate.

There has been a wide range of reported cell volume increase (fNS) in necrotic
cells prior to lysis. Jun et al. (2007) reported cell volume increase of approxi-
mately 30% within 60 minutes of the onset of necrosis in SN4741 neuron cells.
Necrotic “blebs” on cultured liver cells were reported to increase their volume
linearly in time for over 200 minutes in Barros et al. (2003), which supports
our linear necrotic core volume increase, and suggests τNL is on the order of
hours. Grönroos et al. (2005) observed a 1.5-fold increase in cell volume in
necrotic renal tubular cells in approximately 12 hours. Wu et al. (2010) ob-
served necrotic cells swelling between two- and five-fold (1 ≤ fNS ≤ 4) after
24 hours in rat adrenal medulla cells. We use fNS = 1 as our initial estimate;
other values are briefly discussed in the supplementary material, but do not
significantly affect the long-term rate of tumour growth.

4.4 Calcification timescale

Little-to-no literature data are available on the calcification process for necrotic
breast epithelial cells. The best available experimental data are generally an-
imal time course studies of arterial calcification; we use these to estimate the
order of magnitude of τC. Time course studies on post mortem cardiac valves
by Jian et al. (2003) observed significant tissue calcification between 7 days
(10% increase in Ca incorporation) and 14 days (40% increase) after injection
by TGF-β1. Lee et al. (2006a) examined a related process (elastin calcifica-
tion) using a rat subdermal model; calcification occurred gradually over two
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τC (days) 0.5 1 5 15 30

Fraction of core calcified after 30 days (%) 94.0 83.7 51.1 6.9 0.0

Table 2
Fraction of the necrotic core occupied by calcifed debris after 30 days of simulation.

to three weeks. Gadeau et al. (2001) measured calcium accumulation in rab-
bit aortas following oversized balloon angioplasty injury. Calcified deposits
appeared as soon as 2-4 days after the injury, increased over the course of
8 days, and approached a steady state between 8 and 30 days. Hence, we
estimate τC is on the order of days to a few weeks.

To sharpen our estimate, we conducted a parameter study on τC using a sim-
plified form of the model in Macklin et al. (2009a). We varied τC from 12 hours
to 30 days and calculated the percentage of the necrotic core occupied by calci-
fied debris (calculated by area). The results are in Table 2. Calcification times
under 15 days lead to necrotic cores that were nearly entirely calcified; this is
not typically observed in H&E images of DCIS. On the other hand, the 30-day
calcification time lead (as expected) to a complete absence of microcalcifica-
tions in the core at time 30 days. Edgerton et al. (2008) hypothesised that
DCIS tumours may grow to steady state in as little as two-to-three months,
and so we expect microcalcifications by this time. Hence, our sharpened esti-
mate of τC is 15 days, consistent with the literature.

4.5 Oxygen transport parameters

By Owen et al. (2004), the oxygen diffusion length scale L is ∼ 100 µm,
and the cellular oxygen uptake rate λ (in the viable rim) can be estimated

at approximately 0.1 min−1 via L =
√
D/λ and their published value of D.

Other values of D (e.g., from Grote et al. (1977) and Evans et al. (1981)) give
0.1 min−1 ≤ λ ≤ 10 min−1. This does not majorly impact our results because
we calibrate the proliferation and oxygenation sub-models in a self-consistent
manner, and λ acts as an oxygen transport time scale, and all these values
yield fast equilibration relative to the proliferation timescale.

To estimate the hypoxic threshold σH, we examine the mitosis function km(σ)
in Ward and King (1997). At the step function limit, km(σ) ∝ H(σ − σc),
where H is the Heaviside function. The authors determined experimentally
that σc ≈ 0.2 when σ is nondimensionalised by the far-field substrate value
in non-pathologic, well-vascularized tissue. Because the step function limit is
similar to αP, our σH is analogous to σc in Ward and King (1997), and as we
have nondimensionalised oxygen similarly, we set σH = 0.2.

We observe in our histopathology images that the quiescent and proliferating
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viable tumour cells have the same general size; this suggests that the quiescent
tumour cells are relatively metabolically active compared to non-cancerous,
long-term quiescent cells that generally are smaller with condensed nuclei (re-
lates to lack of transcriptional activity), reduced mitochondrial populations
(Freyer, 1998), and less cytosol. Hence, we estimate that proliferating and
non-proliferating viable tumour cells uptake oxygen at comparable rates. This
is consistent with evidence that a cell’s mitochondrial and cytoplasmic vol-
umes are proportional (James and Bohman, 1981), and that oxygen uptake
(Hystad and Rofstad, 1994) correlates with mitochondrial volume. Similarly,
experiments report a linear correlation between glucose uptake and cell vol-
ume (Miller, 1964). For simplicity, we assume all tumour cell uptake oxygen at
the same rate, and λb = 0.01λ. In Video S2, we show that setting the oxygen
uptake rate significantly higher in the proliferating cells (while maintaining an
identical mean oxygen uptake rate via λ = PIλP+(1−PI)λNP) destabilises the
perinecrotic border, and is not consistent with typical patient histopathology.

4.6 Cell mechanics

When patient-specific nuclear size measurements are unavailable, we consider
nuclear grade, where the tumour cell diameter is compared to the size of a red
blood cell (RBC: generally 6 to 8 µm (e.g., Dao et al. (2003))). Low-grade
DCIS nuclei are 1.5 to 2.0 RBCs across (4.5 µm ≤ RN ≤ 7 µm), high-grade
are 2.5 RBCs or more (Rn ≥ 7.5 µm); intermediate grade lies between these
(Tan et al., 2001).

We estimate the maximum adhesive interaction distance RA using published
measurements of breast cancer cell deformations. Byers et al. (1995) found the
deformation of MCF-7 (an adhesive, moderately aggressive breast cancer cell
line) and MCF-10A (a non-malignant but transformed cell line) breast epithe-
lial cells to be bounded around 50% to 70% of the cell radius in shear flow
conditions; this is an upper bound on RA. Guck et al. (2005) measured breast
epithelial cell deformability (defined as additional stretched length over relaxed
length) after 60 seconds of stress. Deformability increased with malignant
transformation: MCF10 deformed 10.5%, MCF7 deformed 21.4%, MCF7 de-
formed 30.4% after weakening the cytoskeleton, and MDA-MB-231 (an aggres-
sive, often motile cancer cell line) deformed 33.7%. Because solid-type DCIS
is adhesive but not invasive, we use the MCF7 estimate and set RA = 1.214R.

We also turn to the experimental literature to estimate the overall magnitude
of the mechanical forces. Cell mechanics can operate over a large range of
time scales (Bursac et al., 2005), ranging from ∼ 0.1 seconds for immediate
viscoelastic responses to 1 minute or more when exposed to prolonged stresses
(Matthews et al., 2006). Matthews et al. (2006) applied magnetic forces to
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distance from cell
center r (µm)

cccr
ν |∇ψ(r)|
(µm/min)

R− 0.50 = 9.4530 0.02524

R− 1.00 = 8.9530 0.10095

R− 2.00 = 7.9530 0.40379

R− 3.00 = 6.9530 0.90852

distance from cell
center r (µm)

cccr
ν |∇ψ(r)|
(µm/min)

R− 0.50 = 9.4530 0.05047

R− 1.00 = 8.9530 0.20189

R− 2.00 = 7.9530 0.80757

R− 3.00 = 6.9530 1.81704

Table 3
Cell relaxation rate given by |∇ψ| for R = 9.953 µm, nccr = 1, and cccr/ν = 10.00
µm/min (left) and 20.00 µm/min (right), for small and intermediate deformations.
The value of M does not play a role when r > RN (typically 4 to 7 µm).

microbeads attached to cultured endothelial cells to measure their cytoskeletal
response to mechanical stress. For longer-duration stresses, they observed bead
displacement velocities on the order of 0.1 µm/min to 10 µm/min (after early
transient dynamics). (See Figs. 6 and 7 in Matthews et al. (2006).) We find
that cccr/ν = 10 µm/min gives |Fccr| /ν within this range for typical cell-cell
interaction distances (R − 3) µm < r < (R − 0.5) µm; see Table 3. This is
consistent with Macklin et al. (2009a), where setting cccr/ν = 8 µm/min and
ccbr/ν = 5 µm/min prevents unreasonable simulation behaviour (overlapping
cell nuclei and cell penetration of the BM). In Section 7.2, we we show that
our simulation results are resilient to error in cccr: the cell density and rate of
tumour growth exhibit little change over a broad range of cccr. For simplicity,
we set M = 1, cccr = ccbr = 10ν µm/min, and nccr = ncbr = 1 (to model
anticipated nonlinear but smooth cell mechanical responses).

5 Numerical methods

We implement the model using object-oriented ANSI C++, where each agent
is an instance of a Cell class. Each cell object is endowed with an instance of a
Cell State class, which contains the cell phenotypic parameters (αP , αA, τP ,
etc.), volumes (VS, VN , V ), radii (RN , R), maximum interaction distances (RA,
recorded as a multiple of R), position x, and velocity v. We order the cells
with a doubly-linked list structure: each agent is given the memory addresses
of the previous and next cells. This allows us to easily delete apoptosed cells
and insert new daughter cells following proliferation events. Wrapping the
phenotypic properties in a Cell State class makes it easy to pass heritable
properties from parent to daughter cells in a generalised manner.

We discretise microenvironmental field variables (e.g., oxygen σ) on an inde-
pendent Cartesian mesh with uniform spacing ∆x = ∆y = 0.1L, where L is
the oxygen diffusion length scale. We represent the BM shape with a level set
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function, and we use an auxiliary data structure to reduce the computational
cost of cell-cell interaction testing and evaluation. (See Section 5.1.)

We now describe the program flow of this numerical implementation. In the
discussion below, N(t) denotes the total number of cells at time t.

(1) Initialisation Routines:
(a) Parse simulation settings file: Parse an XML file containing all

information on the simulation domain, cell types and initial arrange-
ment, phenotypic parameters, data output times, etc. Set global vari-
ables such as the current simulation time t, the current (dynamic)
time step size (∆t, initially zero), etc.

(b) Initialise cells: Create new cell objects and place them within the
computational domain as indicated in the prior step. For each cell,
set its phenotypic parameters, and randomly select its state S with
probabilities specified in the settings (e.g., to match immunohisto-
chemistry). Lastly, set its progression within its state randomly (with
uniform distribution), and update its volume, etc. accordingly.

(c) Initialise BM morphology: Create a level set function d on a mesh
(with ∆x = ∆y = 1 µm) to represent the basement membrane mor-
phology as specified in the settings. Discretise the normal vector n on
the same mesh, computing the gradient n = ∇d either analytically
or by the gradient discretisations in Macklin and Lowengrub (2006).

(d) Initialise microenvironmental variables: Introduce a regular Car-
tesian mesh and discretise the microenvironmental field variables on
that mesh. For oxygen, initialise σ ≡ σB and solve to steady state.

(2) Main program loop: While t < tmax:
(a) Update microenvironmental variables: Each microenvironmen-

tal variable u must be updated from u(x, t − ∆t) to u(x, t). Solve
the various microenvironmental PDEs using standard finite differ-
ence schemes (Macklin and Lowengrub, 2005, 2008; Macklin et al.,
2009b). Compute volume-weighted, upscaled uptake and other re-
action rates as necessary. Use independent time step sizes for each
variable according to standard CFL stability criteria, until each vari-
able has been updated to time t.

(b) Update cell-cell interactions: Update the data structure for cell-
cell interaction testing and evaluation. See Section 5.1.

(c) Update the cells: For each cell:
(i) Progress the current cell state: Update the cell with the appro-
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priate submodel for its previous state S(t − ∆t) until reaching
the current simulation time t. Any field variable values that are
necessary for computing the cell phenotypic transition probabil-
ities (e.g., oxygen) are interpolated at the cell’s position x.

(ii) Choose the next cell state: If the cell was not quiescent at the
previous time step, then set S(t) = S(t − ∆t) unless it has
been altered in (2c.i). If S(t − ∆t) = Q, then choose S(t) by
evaluating the (exponentially-distributed) random probabilities
as described in Section 5.2. We note that the probabilities can
likely be approximated by their linear Taylor expansions:

Pr (S(t+∆t) = S2|S(t) = S1) ≈ α12(S(t), •, ◦)∆t. (19)

We are testing this acceleration among other ongoing code op-
timisations.

(iii) Set the cell velocity: Set v according to Eq. 3. Use the optimi-
sation in Section 5.1 to truncate the summation to a smaller set
of interacting cells.

(d) Set ∆t: Dynamically choose the simulation time step size via:

∆t =
ϵ

max {|vi|}N(t)
i=1

. (20)

Here, ϵ is the desired accuracy in the cell position; we use ϵ = 1 µm.
Note that ∆t is independent of the interaction and microenvironmen-
tal mesh sizes, as the agents themselves are lattice-free.

(e) Update cell positions: For each cell, update the position using:

x(t)=x(t−∆t) + v∆t (21)

While we use the forward Euler difference for simplicity, improved
methods (e.g., Runge-Kutta (Gottlieb and Shu, 1997; Gottlieb et al.,
2001)) are straightforward to implement.

(f) Update the simulation time: Increment t by ∆t.

Each step in the main program loop requires at most iterating through the list
of the cell agents. If interaction testing can be made similarly efficient, then
the overall computational effort is linear in the number of cells. To attain
this, we use an auxiliary cell-cell interaction testing data structure that can
be constructed linearly in the number of cells, and allows a truncation of the
summation in each cell’s velocity in Eq. 3, thus rendering the overall algorithm
linear in the number of cells. See Section 5.1.
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5.1 Accelerated cell-cell interaction testing

Let {k}N(t)
k=1 = {1, 2, 3, · · · , N(t)} be a list of all simulated cells in the com-

putational domain D at time t. We construct a data structure that lists all
possible cell-cell interactions at any point in the computational domain D. We
first introduce a uniform Cartesian mesh M = {xi,j} = {(xi, yj)} (the inter-

action mesh) with spacing ∆x = ∆y = 1µm. At each xi,j ∈ M, let {ki,j
m }Ni,j(t)

m=1

be the list of (potentially) interacting cells at xi,j at time t.

Step 1: Compute the maximum cell-cell interaction distance by

Rcca,max =max
{
Rk

A

}N(t)

k=1
. (22)

Step 2: For each xi,j ∈ M, set ki,j
0 = 0 and Ni,j(t) = 0. Because no cell

has index 0, this denotes the case of 0 possible interactions at xi,j.

Step 3: For each cell k and for each xi,j satisfying:

|xk − xi,j| ≤Rcca,max +Rk
cca, (23)

set:

ki,j
Ni,j(t)+1= k (append the cell to the list at xi,j) (24)

Ni,j(t)=Ni,j(t) + 1. (increment the total at xi,j) (25)

At each xi,j, the result is a list of all cells that can interact with a cell centred at
xi,j. In C++, we implement this scheme as a singly-linked list of cell memory
addresses at each xi,j ∈ M; a NULL pointer indicates either an empty list
(Ni,j(t) = 0) or the end of the list (list member Ni,j(t) points to NULL).

For fixed ℓ and x ∈ D, we use this list to evaluate expressions of the form

for all cells k ∈ {k}N(t)
k=1 \ {ℓ} compute f (cellk, cellℓ) (x), (26)

such as
N(t)∑
k=1
k ̸=ℓ

f (xk,xℓ) . (27)

Let xi,j denote the closest interaction mesh point to xℓ (the position of cell ℓ).
Then we evaluate Eq. 26 by truncating it to the members of the list at xi,j:

for all cells k ∈
{
ki,j
m

}Ni,j(t)

m=1
\ {ℓ} compute f (cellk, cellℓ) (x). (28)
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In the example above, we truncate the summation to

Ni,j(t)∑
m=1
ki,jm ̸=ℓ

f
(
xki,jm

,xℓ

)
. (29)

Setting the interaction mesh spacing to 1 µm sufficiently resolves cells (gen-
erally 10 to 20 µm in diameter), which reduces the impact of the nearest-
neighbour approximation above; in practice, a larger spacing may suffice.

Because our interaction potentials have compact support, there is a fixed upper
bound M1 for the number of operations required to update the interaction
lists for each cell; the operation is linear in the number of cells. Similarly, each
interaction mesh point xi,j has a fixed maximum number of list elements M2,
and so evaluating Eq. 28 for all cells 1 ≤ ℓ ≤ N(t) is linear in the number of
cells. Contrast this with Eq. 26, which for each cell ℓ scales with N(t); iterating
this non-truncated form over all cells thus requires N(t)2 computational effort.

5.2 Evaluating probabilities

Suppose we have (assumed independent) random variables X1, . . . , Xn with
cumulative probability distributions Fi(t), 1 ≤ i ≤ n. We test for the occur-
rence of one of the events Xi in the interval [t, t+∆t] by:

(1) Choose r ∈ [0, 1] with uniform random distribution. Numerically, we use
the ran2 pseudorandom generator procedure from Press et al. (1992); the
Mersenne twister pseudorandom generator is also commonly used.

(2) Set pi = Fi(t+∆t)− Fi(t) for 1 ≤ i ≤ n. Define p0 = 0. Set a = b = 0.
(3) For 1 ≤ i ≤ n:

(a) Set a = b and b = a+ pi. (i.e., a =
∑i−1

j=0 pj and b =
∑i

j=0 pj.)
(b) If a ≤ r ≤ b, then say that event Xi has occurred in [t, t +∆t], and

end the procedure. Otherwise proceed.
(4) If we exit the loop, none of the Xi events has occurred in [t, t+∆t].

We note that in principle, this procedure can break down for large ∆t, as∑n
j=1 pj can exceed 1. In practice, we only evaluate probabilities on short time

intervals, thus the pi are small, and this is not an issue in simulations.
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5.3 Constructing upscaled uptake and reaction terms

Suppose that Λ is a volume-averaged uptake (or reaction) term for a continuum
equation, such as

∂c

∂t
= ∇ · (D∇c)− Λc, (30)

where the spatial length scale L =
√
D/Λ̄ is at least one order of magnitude

larger than cells (e.g., L ≈ 100 µm); Λ̄ is a characteristic value of Λ. For N(t)
defined as above, and for 1 ≤ k ≤ N(t), suppose that λ = λk inside cell k,
and λ = λ0 elsewhere. We construct a cell-scale uptake term λ as follows:

Step 1: Introduce a uniform Cartesian mesh M = {xi,j} = {(xi, yj)} with
spacing ∆x = ∆y = 1 µm to discretise the computational domain.

Step 2: Initialise λi,j = 0 for each xi,j ∈ M.
Step 3: For each cell k, centered at position xk and with (equivalent) radius

Rk, and for each xi,j ∈ M satisfying |xi,j − xk| ≤ Rk, set

λi,j = λi,j + λk (31)

Step 4: For each xi,j ∈ M such that λi,j = 0, set λi,j = λ0.

After completing this procedure, the uptake rate λ equals each cell’s individ-
ual uptake rate where cells are present, and the background rate λ0 elsewhere.
Note that λ > max {λk}N(t)

k=1 wherever cells overlap. This ensures the correct
total uptake throughout the domain, reflecting uncertainty in the cells’ mor-
phologies. If the morphologies were known, we would replace Step 3 with:

Step 3’: For each cell k and for each xi,j ∈ M contained within cell k, set:

λi,j = λi,j + λk (32)

Lastly, we upscale this to a mesh suitable for solving Eq. 30, thereby generating
the continuum-scale uptake Λ:

Step 4: Introduce a Cartesian mesh {(xi, yj) : 1 ≤ i ≤ M, 1 ≤ j ≤ N} with
spacing ∆x = ∆y = 1

10
L to discretise the computational domain. Often,

∆x = ∆y = 10 µm. Suppose then that 1 ≤ i ≤ M and 1 ≤ j ≤ N .
Step 5: For each (i, j) satisfying 2 ≤ i ≤ M − 1 and 2 ≤ j ≤ N − 1, let

Si,j = M ∩
([

xi −
1

2
∆x, xi +

1

2
∆x

]
×
[
yj −

1

2
∆y, yj +

1

2
∆y

])
,

i.e., the points in M contained in a ∆x × ∆y square centred at (xi, yj).
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Let #Si,j denote the number of points in Si,j. Then set

Λi,j =
1

#Si,j

∑
xk,ℓ∈Si,j

λk,ℓ (33)

If ∆x = ∆y = 10 µm, then this is a sum of 100 values on the fine mesh.
Step 6: For boundary points, we re-weight according to the smaller number

of points. For example, for each 2 ≤ i ≤ M − 1, let

Si,1 = M ∩
([

xi −
1

2
∆x, xi +

1

2
∆x

]
×
[
yj, yj +

1

2
∆y

])
,

and set

Λi,1 =
1

#Si,1

∑
xk,ℓ∈Si,1

λk,ℓ (34)

If ∆x = ∆y = 10 µm, then this is a sum of 50 values on the fine mesh.
Handle the other edges and corners analogously.

6 MultiCellXML: An open multicell simulation data format

We have developed a human-readable, XML-based data format for agent-
based, multicell simulations (MultiCellXML), which includes the random seed
state, global variables, information on (and filenames of) microenvironmental
field variables, and a list of each cell object and its current state. This structure
allows us to easily parse the data (using standardised XML parsers, such as
Expat (Clark, 2007), xmlParser (Berghen, 2009), and TinyXML (Thomason
et al., 2010)) for use in data visualisation and post-processing. The list of cells
in the XML file is similar to the object-oriented Cell data structure in the
simulator, making the format well-suited to resuming simulations from saved
states. Modifying simulation parameters during a simulation can be achieved
with simple plaintext search/replace operations in the XML files. We note
that the MultiCellXML format is under active development; readers should
reference the project website 9 for updates, documentation, and software util-
ities. We put forth our data format as a potential draft for inclusion in the
standard being developed by Sluka et al. (2011).

We begin with XML header information (<?xml>) for XML 1.0 standards com-
pliance, followed by a “root” <data set> tag. In the <data source> section,
we include information on the originating simulation software (<simulator>),
the user (<user>), and any publication information that may assist the recipi-
ent of a data file in (1) locating the original source of the data, and (2) proper

9 http://multicellxml.sourceforge.net
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academic citation (<reference>). See Fig. 1. Future MultiCellXML versions
may include reference and citation information for the simulation software.

Following the <data source> section, the <globals> section includes infor-
mation such as the current simulation time and the random seed state–this is
important for resuming saved simulation states without affecting the pseudo-
random number generator. Where possible, we include information on physical
units as XML tag attributes. We note that because this was initially a for-
mat developed for internal use, we have not been entirely consistent in our
conventions–improvements are planned in future drafts of the file specifica-
tion. For dimensionless quantities, the scale should ideally be stated (e.g., as
an additional XML attribute):

<local oxygen units="dimensionless" scale="far-field">0.84</local oxygen>

In future drafts, we may include a new <scales> section to facilitate this.

The file format continues with a list structure of all the cells (<cell list>),
with essentially all internal cell variables (i.e., member data of the Cell class)
listed clearly. We give each <cell> both a numeric type (<cell type code>)
to assist comparing and classifying cells in software, and a human-readable
type (<cell type text>) to assist data recipients with interpreting the data.
See Fig. 2. Note that we have included “type” attributes to indicate Boolean
variables, rather than units. In future file version drafts, we may include both
“type” and “units” attributes to all <cell> data fields. However, we can gen-
erally assume that the presence of units indicates a non-Boolean variable, and
the presence of a Boolean type obviates “units.”

Due to historical reasons stemming from code development, each <cell> is
split into <cell properties> and <cell state> sections; future versions of
the data standard will likely merge these into a single <cell state> section,
because many cell properties tend to change over time due to the cells’ expo-
sure to differing microenvironments.

After all data files have been listed, we include a <global variables> section
with a list of all saved field variables and file formation information. See Fig.
3. Note that we have included the full path of each data file; often all the files
(including the XML file) are saved in the same directory, so postprocessing may
need to strip part of the path by comparison to the <filename> filed in the
<data source> section. Due to the large size of 2-D and 3-D double-precision
data arrays, we opted for a binary data format. For increased compatibility, we
choose the MATLAB .MAT (Level 4) file format, which is relatively simple
to implement directly from the published file format standard (Mathworks,
2010), and is simple to read and write with common open source software
(e.g., Octave) as well as MATLAB. In the source code to follow, we include
C++ code to read and write these MATLAB data.
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<?xml version="1.0" encoding="UTF-8" ?>

<data_set MultiCellXML_version="1.0">

<data_source>

<filename>data/output00000117.xml</filename>

<created>29 July 2010</created>

<simulator>

<program_name>DCIS_2D</program_name>

<program_version>1.38</program_version>

<compiled></compiled>

<author>Paul Macklin</author>

<contact>Paul.Macklin@MathCancer.org</contact>

<URL>http://MathCancer.org</URL>

</simulator>

<user>

<name>Paul Macklin</name>

<contact>Paul.Macklin@usc.edu</contact>

</user>

<reference>

<citation>Macklin et al. J. Theor. Biol. (2011) (in review)</citation>

<URL>http://MathCancer.org/Publications.php#macklin11_jtb</URL>

<note>User notes may go here.</note>

</reference>

</data_source>

<globals>

<time units="minutes">7020</time>

<next_output_time units="minutes">7020</next_output_time>

<frame_number>117</frame_number>

<random_seed_state>769969952</random_seed_state>

<Domain_width_in_microns>1000</Domain_width_in_microns>

<Domain_height_in_microns>340</Domain_height_in_microns>

</globals>

...

Fig. 1. Start of a MultiCellXML file: The first tag is for XML 1.0 standards com-
pliance. The <data source> section indicates the source of the data, including the
originating program, information on the user, and requested reference for citation
(if any). The <globals> section gives information on program globals, including (in
particular) the current simulation time and the random seed state.

Lastly, note that a primary goal of our specification is to make the for-
mat as human-readable as possible, rendering the format (partially) “self-
documenting”. This will make it simpler to interpret archived data long after
the originating software is out of use, thus eliminating the need for reverse
engineering–hence our choice of human-readable, non-binary data. While this
results in much larger files, we regard data compression as a separate software
problem from the specification of content. Compression can readily be applied
to the data files after creation with widespread software, such as gzip.
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...

<cell_list>

<cell>

<cell_properties>

<cell_type_code>0</cell_type_code>

<cell_type_text>DCIS cell</cell_type_text>

<radius units="microns">9.95299956207</radius>

<nuclear_radius units="microns">5.295</nuclear_radius>

<volume units="cubic microns">4130.00487398</volume>

<mature_volume units="cubic microns">4130.00487398</mature_volume>

<solid_volume units="cubic microns">413.000487398</solid_volume>

<cell_adhesion_1_level units="dimensionless">1</cell_adhesion_1_level>

<cell_adhesion_2_level units="dimensionless">0</cell_adhesion_2_level>

<matrix_adhesion_level units="dimensionless">1</matrix_adhesion_level>

<calcite_level units="dimensionless">0</calcite_level>

<mean_cell_cycle_time units="minutes">1080</mean_cell_cycle_time>

<mean_G1_time units="minutes">540</mean_G1_time>

<mean_time_to_apoptosis units="minutes">47196.6</mean_time_to_apoptosis>

<mean_time_to_mitosis units="minutes">115.27</mean_time_to_mitosis>

<cell_adhesion_exponent units="dimensionless">1</cell_adhesion_exponent>

<BM_adhesion_exponent units="dimensionless">1</BM_adhesion_exponent>

<calcite_adhesion_exponent units="dimensionless">1</calcite_adhesion_exponent>

<cell_repulsion_exponent units="dimensionless">1</cell_repulsion_exponent>

<BM_repulsion_exponent units="dimensionless">1</BM_repulsion_exponent>

<cell_adhesion_max_distance units="x radius">1.214</cell_adhesion_max_distance>

<BM_adhesion_max_distance units="x radius">1.214</BM_adhesion_max_distance>

<calcite_adhesion_max_distance units="x radius">1.214</calcite_adhesion_max_distance>

</cell_properties>

<cell_state>

<is_cycling type="Boolean">true</is_cycling>

<is_quiescent type="Boolean">false</is_quiescent>

<is_apoptosing type="Boolean">false</is_apoptosing>

<is_hypoxic type="Boolean">false</is_hypoxic>

<is_necrosing type="Boolean">false</is_necrosing>

<apoptosis_time units="minutes">360.85</apoptosis_time>

<necrosis_time units="minutes">0</necrosis_time>

<cell_cycle_time units="minutes">0</cell_cycle_time>

<Position units="microns">(86.5665990925,53.5000597051,0)</Position>

<Velocity units="microns/minute">(-0.108426856979,0.213070920989,0)</Velocity>

</cell_state>

</cell>

<cell>

...

</cell>

...

</cell_list>

...

Fig. 2. Main content of a MultiCellXML file: Within the <cell list> section, we
save each individual cell agent’s data within a set of <cell></cell> tags, including
<cell properties> and the <cell state>. In future revisions, these fields may
be merged due to the fact that cell properties change in time. Note 1: These fields
have been minimised from the actual published datasets to simplify the presentation.
Note 2: the <is debris> tag is from an earlier version of the model, but unused
here.
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...

<global_variables>

<variable>

<name>oxygen</name>

<format version="Level 4">MATLAB</format>

<filename>data/oxygen_00000117.mat</filename>

</variable>

<variable>

<name>Duct_Wall_Level_Set</name>

<format version="Level 4">MATLAB</format>

<filename>data/level_set.mat</filename>

</variable>

</global_variables>

</data_set>

Fig. 3. End of a MultiCellXML file: After the cell list section, the
global variables section gives a list of all associated external field data (here
saved in MATLAB format).

6.1 Benchmark datasets

To demonstrate our open data format and serve as benchmark datasets, we
are releasing 10 the full datasets for simulation times 0, 15, 30, and 45 days
from the “baseline” simulation in the main text. Included files:

(1) output00.zip: contains all data from 0 days:
(a) output000000000.xml: MultiCellXML data
(b) oxygen 000000000.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

(2) output15.zip: contains all data from 15 days:
(a) output000000360.xml: MultiCellXML data
(b) oxygen 000000360.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

(3) output30.zip: contains all data from 30 days:
(a) output000000720.xml: MultiCellXML data
(b) oxygen 000000720.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

(4) output45.zip: contains all data from 45 days:
(a) output0000001080.xml: MultiCellXML data
(b) oxygen 000001080.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

The most up-to-date version of these datasets will be maintained at the
MultiCellXML project website.

10 No license applies here, aside from standard scientific citation ethics. Please ref-
erence Macklin et al. (2011).
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6.2 Sample post-processing

Because the cell data are saved in a standardised XML configuration, post-
processing is a combination of XML parsing and visualisation (to interpret
the data). In our implementation, we choose the relatively compact TinyXML
library (Thomason et al., 2010) with customised interfaces to simplify the
process; this allows us to distribute code as fully self-contained, without need
for installation of external libraries. We use the open source EasyBMP li-
brary (Macklin, 2005–present) for image operations. Source code is provided
at MathCancer.org 8 ; this software has been tested in Windows (with the
mingw implementation of the g++ compiler), Linux, and OSX 10.6 in 32-bit
and 64-bit environments.

In our post-processing code, we do the following:

(1) Parse the <cell list> XML data:
(a) Create a singly-linked list of a simplified cell objects (read from the

<cell list> section), consisting primarily of cell location, radius,
degree of calcification, and phenotypic state.

(b) Plot the cells in a temporary BMP image (in the program memory
space–this is not actually saved as a file) for use in further geometric
processing.

(c) Plot a virtual “buffer” around all the cells to help fill in holes in the
viable rim–this is essential for later cell density calculations, as well
as for identifying the entire viable rim.

(2) Fill remaining holes in the viable rim to ensure its correct identification.
(3) Crop the virtual images at the leading and trailing edges to eliminate

the “edge effects” and best match the patient data images. Remove the
corresponding cell objects from the linked list.

(4) Count the total, proliferating, and apoptotic cells within the viable rim.
Use these to calculate the proliferative index (PI) and apoptotic index
(AI).

(5) Count the number of coloured pixels of the viable rim in the temporary
image, and use this to calculate the area of the viable rim. (1 pixel is 1
µm2.)

(6) Use the known length of the cropped domain to calculate the mean viable
rim thickness.

(7) Use the viable rim area and total cell count in the cropped areas to
calculate the cell density.

(8) Calculate the position of the farthest tumour cell (uncropped). Do the
same for calcified cells.

(9) Use the known total numbers of (uncropped) viable tumour cells to find
the 95% position (i.e., xV95 such that 95% of the tumour is in the region
{(x, y) : x ≤ xV95}). Do the same for calcified cells.
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(10) Append these data to PPdata.txt.
(11) Once done looping over all specified files, write legend.txt to document

the structure of PPdata.txt

To use this code, compile it according to your compiler instructions. (g++ users
may use the supplied makefile. Windows 32-bit binaries are included in our
distributions. Please note that the compiler optimisations are oriented towards
32-bit Core2 Intel processors and above.) To apply the code to the supplied
data for time 30 days, type:

> ./PostProcessing output00000720.xml

To apply the code to all the supplied data, type:

> ./PostProcessing output*.xml

This software is licensed under the GPL 3.0. It is packaged with TinyXML
(zlib/libpng license – see Thomason et al. (2010)) and EasyBMP (Modified
BSD license – see Macklin (2005–present)). We request that users cite this
paper and the project website in their “methods” section when publishing
results that make substantial use of the code or derivative works.

6.3 Sample visualisation

Visualisation is performed similarly, but requires much less processing. We
plot each cell as a circle with correct colour, overlay a solid nucleus, and draw
a dark border. We draw the BM based upon the zero contour of the level set
function. We then overlay a scale bar, label the time, and save the image.

We regard image creation and image compression as separate software prob-
lems. We use the BMP format because it is simple, universally understood,
can be implemented without need for complex external libraries, and does
not introduce visual artefacts to the data (in contrast to formats with lossy
compression, such as JPEG). The lack of visual artefacts is also helpful for
pixel-based image processing operations by other software. Users can readily
compress the images using standard tools (e.g., ImageMagick and GIMP), or
combine the BMP frames into an (uncompressed) AVI animation using tools
such as EasyBMPtoAVI (Macklin, 2006–present).

Source code is provided at MathCancer.org 8 ; this software has been tested
in Windows (with the mingw implementation of the g++ compiler), Linux,
and OSX 10.6 in 32-bit and 64-bit environments. To use this code, compile
it according to your compiler instructions. (g++ users may use the supplied
makefile. Windows 32-bit binaries are included in our distributions. Please
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note that the compiler optimisations are oriented towards 32-bit Core2 Intel
processors and above.) To apply the code to the supplied data for time 30
days, type:

> ./visualize_DCIS_2D output00000720.xml

This software is licensed under the GPL 3.0. It is packaged with TinyXML
(zlib/libpng license – see Thomason et al. (2010)) and EasyBMP (Modified
BSD license – see Macklin (2005–present)). We request that users cite this
paper and the project website in their “methods” section when publishing
results that make substantial use of the code or derivative works.

7 Additional numerical studies

We performed additional numerical studies, which support and/or further in-
vestigate the model, and may be of interest to the reader.

7.1 Analysis of calibration discrepancies

To understand the discrepancy in the mean PI between our simulation and the
patient data for future improvement in our calibration protocols, we examined
our proliferation model more closely. Our protocol was based upon an earlier
version of the proliferation “sub-model”, where the cells do not divide until
spending τP time in the cell cycle (Macklin et al., 2009a); in our current model,
cells divide after τP − τG1 and continue cycling and growing for τG1 time.
For a given set of αA and αP parameters, this should increase the simulated
proliferative index. To test this, we first modify our system of ODEs to include
PSG2M (cycling cells in S, G2, and M phases), PG1 (cycling cells in G1 phase),
A (apoptotic cells), and Q (quiescent cells in G0):

ṖSG2M = ⟨αP⟩Q− 1

τP − τG1

PSG2M (35)

ṖG1 =
2

τP − τG1

PSG2M − 1

τG1

PG1 (36)

Ȧ=αAQ− 1

τA
A (37)

Q̇=
1

τG1

PG1 − (⟨αP⟩+ αA)Q (38)
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If P = PSG2M + PG1 and N = P + A+Q, then

PI =
P

N
, and AI =

A

N
. (39)

If we solve the system for 0 ≤ t ≤ 720 hours with Q(0) = 1 and A(0), P (0) = 0
with the parameter values in the main text, then we should be able to predict
the simulation’s mean AI and PI. By this calculation, the PI and AI approach
24.45% and 0.761%, respectively, for Eqs. 35-38. Both of these limits match
our simulated mean PI (24.04%) and AI (0.738%) very well.

All measurements given as mean ± standard deviation

Quantity Patient Data
Simulated:
τG1 = 9 hr

Simulated:
τG1 = 1 min

PI (%) 17.43 ± 9.25 24.04 ± 4.587 18.25 ± 4.25

AI (%) 0.831 ± 0.572 0.7378 ± 0.7146 1.204 ± 0.1102

Viable rim
thickness (µm)

76.92 ± 12.51 80.73 ± 1.10 80.57 ± 1.68

Cell density
(cells/µm2)

0.003213 ± 5.95e-4 0.002950 ± 6.09e-5 0.002923 ± 7.67e-05

Table 4
Verification of the patient-specific calibration (expanded): Comparison of
the patient (second column) and computed (third and fourth columns) mean and
standard deviation for the proliferative index, apoptotic index, viable rim thickness,
and cell densities. The fourth column demonstrates that future calibration proto-
cols should incorporate the impact of τG1 using a more sophisticated population
dynamic analysis. All computed quantities are within the range of patient variation.

Conversely, setting τG1 = 1 min minimises the impact of the G1 phase, and
the simulated PI matches the calibration target very closely; see Table 4.
Because we can fully account for the discrepancy between the patient and
simulated data with our improved understanding of the model, we can safely
conclude that the calibration is performing well, and should match patient
data exceedingly well once taking into account the division of the cell cycle
into G1 and non-G1 (S-G2-M) phases. We plan improvements to our calibration
based upon these observations in ongoing work.

7.2 Robustness of the mechanics parameters

In Section 4.6, we estimated the cell-cell repulsion parameter cccr/ν to be on
the order of 10 µm/min. To assess the sensitivity of the model to error in
this estimate, we varied cccr/ν ∈ {1, 2, 5, 10, 20, 100} µm/min and simulated
30 days of growth with all other parameters as in the baseline case in the
main text. In particular, we kept ccca/cccr constant for all the simulations to
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Fig. 4. Robustness of the mechanics parameters: We varied the cell-cell repul-
sive force cccr/ν while maintaining the relative balance of the forces; this is equivalent
to varying the biomechanics time scale. For cccr/ν within an order of magnitude of
our initial estimate, both the tumour front velocity (left plot) and viable rim cell
thickness (right plot) varied little from our baseline simulation. Bars represent one
standard deviation from the computed mean for each parameter value.

maintain the target cell density as in the calibration protocol, and we set
ccbr = cccr, and ccba = 10ccca. Changing cccr while maintaining these ratios of
forces is equivalent to altering the biomechanics time scale.

For each combination of mechanics parameters, we calculated the smoothed
tumour front velocity x′

V(t) at one-hour intervals from 10 to 25 days. (xV ex-
ceeds 1 mm at 30 days for cccr/ν = 100 µm/min.) For any t, we calculated the
smoothed x′

V(t) based upon the least-squares linear fit to xV on t± 24 hours.
In Fig. 4: left, we plot ⟨x′

V⟩ versus cccr/ν; the bars denote one standard devia-
tion above or below the mean. For 5 ≤ cccr/ν ≤ 50 µm/min, the tumour front
velocity was comparable, indicating that our simulations are robust so long
as we can estimate the mechanics parameters within an order of magnitude.
This is advantageous, as the individual cell mechanics parameters are among
the most difficult to measure accurately.

To further evaluate the model’s robustness, we calculated the mean cell density
ρ throughout the viable rim at one-hour increments from 10 to 25 days for
each of these simulations. In Fig. 4: right, we plot ⟨ρ⟩ versus cccr/ν; the bars
denote one standard deviation above or below the mean. Similarly to ⟨x′

V⟩,
the mean cell density was comparable for 5 ≤ cccr/ν ≤ 100 µm/min. This
again indicates that our simulations are robust so long as we can estimate the
mechanics parameters within an order of magnitude. Note that if cccr/ν ≤ 1
µm/min, then the cell density increases rapidly due to overlapping cells, as we
observed in Macklin et al. (2009a).
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Fig. 5. The tumour advances exponentially (red and blue curves) until the viable
rim is well-established and cell lysis has begun. Thereafter, the tumour advances
through the duct at a constant rate (magenta curves).

7.3 On the balance of cell-cell and cell-BM adhesion

We studied the impact of the balance of cell-cell and cell-BM adhesive forces
by varying ccca

ccba
∈ {0.01, 0.1, 1, 10}, while maintaining ccca

cccr
constant. As this

ratio is increased to 1 and above, the cells begin to pull off the BM except in
regions of dense cell packing (results not shown). Such behviour, which may be
reduced in 3D due to the duct curvature, is not consistent with typical patient
histopathology. On the other hand, for ccca

ccba
= 0.01, it was very difficult for

daughter cells to push away from the BM after proliferation, leading to a
non-physical “wetting” effect along the duct wall similar to a fluid capillary
force (result not shown). We note that in the regime where ccba ≫ ccca, the
lack of tangential cell-BM force components can contribute significant errors
to simulations (the BM becomes a frictionless surface).

7.4 Necrotic cell lysis is critical to linearity of tumour advance

In the main text, we found that necrotic cell lysis acts as a mechanical stress
relief, and leads to a constant rate of tumour advance through the duct.
To better understand this effect, we varied the necrotic cell lysis time scale
τNL ∈ {2, 6 hours, 1, 5, 15 days}, with all other parameters as in the baseline
simulation. To characterise the impact, we first examine the time evolution of
the maximum tumour cell extent xV for τNL = 15 days. See Fig. 5: left.

For the first 6 days, there is no necrosis, and the tumour grows exponentially;
see the plot of xV (black and white curve) versus the red fitted exponential
curve on [0,6] in Fig. 5: left. (All exponential fits are linear least squares
fits to log10 xV.) At 6.08 days, the first cells necrose, and the viable region
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Fig. 6. For sufficiently small necrotic cell lysis times (τNL), the tumour’s linear
advance is roughly identical, with linear growth after the onset of necrotic cell
lysis (around 5 to 6 days) that becomes clearer once the viable rim topology is
well-established (around 10 days).

undergoes a topological change, splitting into upper and lower viable rims; in
3D, this would correspond to a hollow tube. Once this topological change is
well-established (by approximately 10 days), growth continues exponentially
at a lower rate; see the blue fitted exponential curve on [10,21] in Fig. 5: left.
At 21.04 days (15 days after the first instance of necrosis), the necrotic cells
begin to lyse, and the tumour’s growth becomes linear as discussed earlier; see
the magenta fitted line in Fig. 5: left on [21, 22.08]. At 22.08 days, the cells
reach the edge of the computational domain at 1 mm.

The dynamic is the same for τNL = 5 days: growth is exponential at a high rate
until the first instance of necrosis around 6 day; see the red fitted exponential
curve on [0,6] in Fig.5: right. From 6 days to approximately 10 days, the
tumour viable region is undergoing a topological change to a hollow tube;
this can be observed by its transitional behaviour from 6 to approximately 10
days. The first necrotic cells begin to lyse at 11 days, and the tumour growth
is linear until cells leave the simulation domain (1 mm) around 27 days; see
the magenta fitted line in Fig. 5: right. Note that while growth is linear from
11 to 15 days, it appears to be at a faster rate, due to the dominance of the
unlysed necrotic cells for these earlier times.

For lysis times under 1 day, growth is exponential for approximately the first
5 to 6 days, followed by a transitional period from approximately 6 to 10
days while the viable rim undergoes its topological change. Linear growth
follows from 10 days until the end of the simulation at 30 days. This is the
expected dynamic, given that necrotic cells begin lysing well before the end
of the viable rim topological change. See Fig. 6. Note that all three tumours
advance at approximately the same rate.
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8 Videos

To better illustrate the key results, we include the following animations below.
In each animation, the cells are labelled as follows:

• Dark blue circles: cell nuclei
• Green cells: proliferating cells (S = P ; cells in non-G0 phase)
• Pale blue cells: quiescent cells (S = Q; cells in G0 phase)
• Red cells: apoptotic cells (S = A)
• grey cells: necrotic cells prior to lysis (S = N , τ < τNL)
• Red circles: necrotic cellular debris after lysis (S = N , τNL < τ < τC); shade
of red indicates the degree of calcification and cellular degradation

• Bright red circles: clinically-detectable calcified cellular debris
S = N , τ > τC)

The movies are in MP4 format. The open source VLC media player can play
these movies on multiple platforms, including Windows, OSX, and Linux.
Alternate formats are indicated below.

(1) Video S1: the “baseline” simulation from the main text, plotted in 1.5
mm of duct from 0 to 45 days.
Alternate format: http://www.youtube.com/watch?v=b GVnZWVhgk.

(2) Video S2: unstable perinecrotic boundary (between the viable rim and
the necrotic core) resulting from heterogeneous cellular oxygen uptake
rates (proliferating cells uptake oxygen 100 times faster than quiescent
cells), plotted from 0 to 30 days in 1 mm of duct.
Alternate format: http://www.youtube.com/watch?v=Brgw8qI8k-k.
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